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COMMENT 

Amplitude ratio of the second moments of the cluster size 
distribution on both sides of the percolation threshold 

H Ottavi 
Laboratoire d'Electronique, Universitt de  Provence, Centre St-JCrBme, 13397 Marseille 
Cedex 13. France 

Received 14 Ju ly  1986 

Abstract. We propose in this comment an approximate form for the cluster size distribution 
function n, .  By means ofthis function, we can obtain not only the correct critical exponents 
of all moments of this distribution function, but the ratios of selected amplitudes as well, 
for all dimensions for which two critical exponents such as p and y are known. We 
calculate explicitly the ratio C + / C  of the second moments of n. for dimensions d = 2, 3, 
4, 5 and 6 - E .  In particular, for 6 - E ,  our result agrees to order c 2  with previous theoretical 
calculations, while for d = 2 we obtain the large value 194, in good agreement with earlier 
Monte Carlo results. 

1. Introduction 

Universality in percolation applies not only to the critical exponents but also to selected 
ratios of the prefactors of various critical quantities [ 1-31. 

Stauffer [4-61 has suggested, for the number of clusters of size s (>> 1) near the 
percolation threshold, a distribution function of the form n, = K s - ' f (  z), with z = 
A ( p - p , ) s " ,  where p is the probability for a site to be active. The proportionality 
constants K and A, as well as the percolation threshold p c ,  depend on the specific 
lattice on which the percolation problem is mapped, but the exponents T and U, closely 
related to the more commonly used p and y, are found to be universal for all lattices 
of the same Euclidean dimension d. The functionf(z) is also presumed to be universal; 
it is one of the purposes of this comment to suggest an explicit form for this function. 

Let us first outline a few definitions. For the sake of brevity, we shall confine our 
discussion to the problem of site percolation, though our results are equally valid for 
the bond percolation case. In order to emphasise the analogy with the temperature 
parameter in a magnetic transition, we define the deviation from the critical point as 
t = ( p , - p ) / p , .  We let n,( t )  represent the average number per active site of clusters 
of size s. The probability of an active site belonging to a finite cluster is then given 
by the first moment of the distribution n,: 

(1) 

Evidently then, below the threshold ( t  > O )  MI = 1, as every active site belongs to a 
finite cluster. On the other hand, above the threshold, we have a non-zero probability 
that an active site belongs to the infinite cluster: 

MI = 1 sn,( t ) .  
s 

P,  = 1 - M ,  = BltlP (ltl<< 1) (2) 
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where it is readily shown that p = ( ~ - 2 ) / a  [4-61. I f  we now consider the second 
moment M 2  of n,, we find that this is the expectation value, or ‘mean’, of the size of 
the cluster to which the site belongs. For percolation this is the exact mathematical 
analogue of the magnetic susceptibility, which diverges with an exponent y :  

where again it is readily shown that y = (3  - T ) / U  [4-61. The notation C= (the subscript 
corresponding to the sign of 1 )  emphasises the fact that although the exponent of the 
divergence of M 2  is the same on both sides of the percolation threshold, the prefactors 
are not necessarily identical. It is in fact the main purpose of this comment to present 
an  evaluation of the ratio 

(4) R = C+/C- =lim 1-0 S(+ l t l ) /S ( - l t l ) .  

It appears useful to state immediately the result which we shall obtain: starting 
with the exponent p, we show that it is sufficient to calculate an intermediate variable 
A, obtained from the implicit equation 

0 = loz ( A  - 2x)x-’ exp( Ax - x’) dx. 

Once A has thus been determined, the ratio R = C+/C- is immediately calculated by 
inserting A and  the known value of y in the ratio of the two definite integrals: 

R = C+/C- = ) ( loK x Y - l  exp( -Ax - x’) d x  . xy-’ exp(Ax-x’) d x  (6) 

We see in table 1 the comparison of the results of our method, using currently 
accepted values of p and y [2,3], with published values of the ratio C , / C  [2,7]. 
These latter, most often obtained from Monte Carlo calculations, are currently con- 
sidered to be accurate to IO-20% at best. To this order of accuracy, our values, 
calculated as above, are indeed in satisfactory agreement. We further show, in the last 
section of this comment, that the use of our method and E expansions of p and y for 
dimension 6 - E  gives an  evaluation of the ratio R which agrees to order E‘  with 
current theoretical expansions [ 11. 

) - I  (JOE 

Table 1. Comparison of present results with published values for R t 

R fma, 
(experi- (experi- 

h R mental) fmaX mental j 
d p  Y (calculated) (calculated) [2,7] (calculated) [ 5 ,  101 

219*25 
1 9 4 2 4  

2 0.139 2.39 2.517 194 { 4.87 4.5-5.4 

3 0.42 1.76 1.314 9.03 8-11 1.54 1.6 
4 0.57 1.46 0.898 3.75 - 5  1.22 ? 
5 0.68 1.26 0.636 2.33 2.4 1.106 ? 

t Calculated values are from our equations. f,,, is the maximum value of the function 
L ( 0  = % ( l ) / 4 ( 0 ) .  
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2. Derivation of a 'shifted Gaussian' form for n,(r) 

The exact expression for the average distribution of clusters of size s per active site is 

where gs(  U )  is the number of possible configurations of clusters of size s and perimeter 
U ( g , ( u )  is a purely geometric factor independent of p ) .  

If we carry out a Taylor expansion of the sum G , ( p )  in powers of the variable 
t (  = ( pc - p ) / p c ) ,  we obtain to second order in t 

G,( p )  = z  A,( 1 + Bit + C,t2+. . .) (8) 

where A, =C.g,(U)(l  - p J " ,  A@, = p c C u  Ug,(U)(l -pcIu-I and  2A,C,= 
pf Z,, U(U - l ) g , ( u ) ( l  -P~)'-~. For s >> 1, equation (7) thus becomes 

n , ( r ) = A , p d ( l - t ) ' ( l + B , t + C , t * )  (9) 

which in the limit / t l < <  1, and using the identity 1 + at + bt2 = exp[at - ( a 2 / 2  - b )  t ' ] ,  we 
can write in exponential form: 

(10) n , ( t )  = n,(O) exp(D,t  - E J ' )  

with n,(O)=A,pe, D, = ( B , - s ) ,  E , = ( B ; + s - 2 C i ) / 2 .  
At this stage, we recall the two conditions of the scaling hypothesis: that ( i )  

n,(O) 1 Ks-' and that ( i i )  L( t )  = n,(t)/n,(O) be a function of the reduced variable ts" 
only. We must perforce then write D, = KIs", E ,  = K2s2", yielding 

(11) 

where the constants K ,  K ,  and K 2  are all positive from physical considerations. 
The above equation (1 1 ) for n, ( t),  derived here for 1 t (  << 1, was in fact first proposed 

by Leath [8] on the basis of 'experimental' data. Upon the further introduction in 
n , ( t )  of a change of scale T = t f i ,  and a new constant A = K l / f i 2 ,  we thus find 
that the ratio R = C+/C- ,  equation (4), becomes 

n , ( t )  = Ks-' exp( K,ts"  - K,t2s2") 

Z, s 2 n , (  T) - E, s2-' exp(ATs" - T2s2") 
R = lim+ 

T - o  C , s 2 n , ( - T ) - C ,  s'-'exp(-ATs"- T ? S ' ~ ) '  

All we therefore need to perform the evaluation of R is the appropriate value for the 
constant A.  

We recall, however, from our introductory remarks, that the first moment MI of 
the distribution n, must be constant for all T > 0. In particular, this implies that its 
first derivative d M l / d T ,  evaluated by means of our expression (1  l ) ,  should approach 
zero for T + O', i.e. 

l im+(dM,/dT) = l i m + c  d / d T ( s n , ) =  lim (hs"-2Ts2")s1-' exp(ATs"- T2s2") d s  
T-0 T-0 , 

= lim+( TP- ' /a)  ( A  - 2x)x-' exp(Ax - x') d x  
T-0 I: 

where in the second integral expression we have used the substitutions x = Ts" and  
p = (7 - 2) / a .  It is quite evident, therefore, that for p < 1 (i.e. not for the Bethe lattice) 
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the divergence of the derivative can only be avoided by the vanishing of the coefficient 
integral (previously stated as equation ( 5 ) )  

a(A,  p )  = 0 = ( A  -2x)x-@ exp(hx - x2) dx. lom 
By inspection this can only occur, for a given value of p, at a unique value of A. 
(Reatto [9] seems to have been the first to have used such a relation in cluster models.) 
Figure 1 displays the solution of the implicit equation ( 5 ) ,  which can be solved by 
various numerical methods. 

P 

Figure 1. Dependence of A on the critical exponent p, as obtained from equation ( 5 ) .  The 
dotted curve represents the approximate dependence given by series expansion (16) in 
b = 1 - 4 .  

In exactly the same way as in equation (13), by transforming the sums in equation 
(12) to integrals and again making the substitutions x = Ts" and y = ( 3  - T ) / v ,  we 
immediately obtain equation (6) for the ratio R. 

As previously indicated, the numerical results are displayed in table 1. We have 
added to this table the theoretical value of the maximum of the function fs( t )  = 
n,( t ) / n , ( O ) ,  for which our model gives exp(A2/4), and which agrees remarkably well 
with previously known experimental values [5, 6, 101. 

3. Calculation for dimension 6-  E 

As the Euclidean dimension approaches the critical value d = 6, the exponent p 
approaches 1 from below while y approaches 1 from above. We may therefore write 
p = 1 - 6 and y = 1 + c, with 6 and c as positive first-order corrections. 
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Integrating by parts, we can restate equation (5) in the form 

which, after replacing e"' by its power series expansion, can be rewritten as an  infinite 
sum of gamma functions 

oc 

O =  Am{I'[(b+m-1)/2]}/m!. (15)  
m = O  

Taking the lowest order terms of (15) in A and  b, we finally obtain the expression 

A = b ~ { 1 + b ( l - l n 2 ) + b Z [ 1 - r r / 4 + . r r ' / 2 4 - l n 2 + ( l n 2 ) 2 / 2 ] + .  ..}. (16) 

In a similar way, it can be shown that 

R = 1 + 2 H A + 2 H 2 A 2 +  . . .  

where 

H = l /&{l+ c In 2+c2[-.rr2/24+(ln 2 )2 /2 j+ .  . .}. 

Combining then the results of equations (16) and (17), we obtain to second order 

R = 1 + 2 6 +  b2(4-2  In 2 )+bc (2  In 2 ) + .  . . . (18) 

For dimension d = 6 - E, the expansions for p and y are [ 111 

p = 1 - ~ / 7 - ~ ~ 6 1 / 7 ~ 3 ~ 2 ~ + . . .  

y = 1 + ~ / 7 + ~ ~ 5 6 5 / 7 ' 3 ~ 2 ~ + . . .  

whence it follows that, to order E ' ,  

R = 1 -k 2 ~ / 7  + ~ ~ 5 6 5 1 7 ~ 3 ~ 2  + . . . 
which is precisely Aharony's result [ 13. 

4. Conclusions 

The ideas of this comment represent a simple rederivation of results already well 
known in percolation theory. The 'shifted Gaussian' approximation for n,( t )  appears 
to give excellent numerical and  analytical results even though it might be in disagree- 
ment with the theorem of Kunz and Souillard [12] (see reference [5], p 32, for a 
thorough discussion of this question). 
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